Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Small ; : e2402371, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38597692

RESUMEN

Quantum dot (QD) light-emitting diodes (QLEDs) are promising for next-generation displays, but suffer from carrier imbalance arising from lower hole injection compared to electron injection. A defect engineering strategy is reported to tackle transport limitations in nickel oxide-based inorganic hole-injection layers (HILs) and find that hole injection is able to enhance in high-performance InP QLEDs using the newly designed material. Through optoelectronic simulations, how the electronic properties of NiOx affect hole injection efficiency into an InP QD layer, finding that efficient hole injection depends on lowering the hole injection barrier and enhancing the acceptor density of NiOx is explored. Li doping and oxygen enriching are identified as effective strategies to control intrinsic and extrinsic defects in NiOx, thereby increasing acceptor density, as evidenced by density functional theory calculations and experimental validation. With fine-tuned inorganic HIL, InP QLEDs exhibit a luminance of 45 200 cd m-2 and an external quantum efficiency of 19.9%, surpassing previous inorganic HIL-based QLEDs. This study provides a path to designing inorganic materials for more efficient and sustainable lighting and display technologies.

2.
Angew Chem Int Ed Engl ; 63(8): e202316733, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38170453

RESUMEN

Heavy-metal-free III-V colloidal quantum dots (CQDs) are promising materials for solution-processed short-wave infrared (SWIR) photodetectors. Recent progress in the synthesis of indium antimonide (InSb) CQDs with sizes smaller than the Bohr exciton radius enables quantum-size effect tuning of the band gap. However, it has been challenging to achieve uniform InSb CQDs with band gaps below 0.9 eV, as well as to control the surface chemistry of these large-diameter CQDs. This has, to date, limited the development of InSb CQD photodetectors that are sensitive to ≥ ${\ge }$ 1400 nm light. Here we adopt solvent engineering to facilitate a diffusion-limited growth regime, leading to uniform CQDs with a band gap of 0.89 eV. We then develop a CQD surface reconstruction strategy that employs a dicarboxylic acid to selectively remove the native In/Sb oxides, and enables a carboxylate-halide co-passivation with the subsequent halide ligand exchange. We find that this strategy reduces trap density by half compared to controls, and enables electronic coupling among CQDs. Photodetectors made using the tailored CQDs achieve an external quantum efficiency of 25 % at 1400 nm, the highest among III-V CQD photodetectors in this spectral region.

3.
Adv Mater ; 36(4): e2310122, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37983739

RESUMEN

III-V colloidal quantum dots (CQDs) are of interest in infrared photodetection, and recent developments in CQDs synthesis and surface engineering have improved performance. Here this work investigates photodetector stability, finding that the diffusion of zinc ions from charge transport layers (CTLs) into the CQDs active layer increases trap density therein, leading to rapid and irreversible performance loss during operation. In an effort to prevent this, this work introduces organic blocking layers between the CQDs and ZnO layers; but these negatively impact device performance. The device is then, allowing to use a C60:BCP as top electron-transport layer (ETL) for good morphology and process compatibility, and selecting NiOX as the bottom hole-transport layer (HTL). The first round of NiOX -based devices show efficient light response but suffer from high leakage current and a low open-circuit voltage (Voc) due to pinholes. This work introduces poly[bis(4-phenyl) (2,4,6-trimethylphenyl)amine] (PTAA) with NiOX NC to form a hybrid HTL, an addition that reduces pinhole formation, interfacial trap density, and bimolecular recombination, enhancing carrier harvesting. The photodetectors achieve 53% external quantum efficiency (EQE) at 970 nm at 1 V applied bias, and they maintain 95% of initial performance after 19 h of continuous illuminated operation. The photodetectors retain over 80% of performance after 80 days of shelf storage.

4.
Adv Mater ; 35(46): e2306147, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37734861

RESUMEN

In the III-V family of colloidal quantum dot (CQD) semiconductors, InSb promises access to a wider range of infrared wavelengths compared to many light-sensing material candidates. However, achieving the necessary size, size-dispersity, and optical properties has been challenging. Here the synthetic challenges associated with InSb CQDs are investigated and it is found that uncontrolled reduction of the antimony precursor hampers the controlled growth of CQDs. To overcome this, a synthetic strategy that combines nonpyrophoric precursors with zinc halide additives is developed. The experimental and computational studies show that zinc halide additives decelerate the reduction of the antimony precursor, facilitating the growth of more uniformly sized CQDs. It is also found that the halide choice provides additional control over the strength of this effect. The resultant CQDs exhibit well-defined excitonic transitions in spectral range of 1.26-0.98 eV, along with strong photoluminescence. By implementing a postsynthesis ligand exchange, colloidally stable inks enabling the fabrication of high-quality CQD films are achieved. The first demonstration of InSb CQD photodetectors is presented reaching 75% external quantum efficiency (QE) at 1200 nm, to the knowledge the highest short-wave infrared (SWIR) QE reported among heavy-metal-free infrared CQD-based devices.

5.
Nano Lett ; 23(10): 4298-4303, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37166106

RESUMEN

Solution-processed colloidal quantum dots (CQDs) are promising materials for photodetectors operating in the short-wavelength infrared region (SWIR). Devices typically rely on CQD-based hole transport layers (HTL), such as CQDs treated using 1,2-ethanedithiol. Herein, we find that these HTL materials exhibit low carrier mobility, limiting the photodiode response speed. We develop instead inverted (p-i-n) SWIR photodetectors operating at 1370 nm, employing NiOx as the HTL, ultimately enabling 4× shorter fall times in photodiodes (∼800 ns for EDT and ∼200 ns for NiOx). Optoelectronic simulations reveal that the high carrier mobility of NiOx enhances the electric field in the active layer, decreasing the overall transport time and increasing photodetector response time.

6.
Adv Mater ; 35(28): e2301842, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37170473

RESUMEN

III-V colloidal quantum dots (CQDs) are promising materials for optoelectronic applications, for they avoid heavy metals while achieving absorption spanning the visible to the infrared (IR). However, the covalent nature of III-V CQDs requires the development of new passivation strategies to fabricate conductive CQD solids for optoelectronics: this work shows herein that ligand exchanges, previously developed in II-VI and IV-VI quantum dots and employing a single ligand, do not fully passivate CQDs, and that this curtails device efficiency. Guided by density functional theory (DFT) simulations, this work develops a co-passivation strategy to fabricate indium arsenide CQD photodetectors, an approach that employs the combination of X-type methyl ammonium acetate (MaAc) and Z-type ligands InBr3 . This approach maintains charge carrier mobility and improves passivation, seen in a 25% decrease in Stokes shift, a fourfold reduction in the rate of first-exciton absorption linewidth broadening over time-under-stress, and leads to a doubling in photoluminescence (PL) lifetime. The resulting devices show 37% external quantum efficiency (EQE) at 950 nm, the highest value reported for InAs CQD photodetectors.


Asunto(s)
Puntos Cuánticos , Ligandos , Conductividad Eléctrica
7.
J Am Chem Soc ; 144(45): 20923-20930, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36327099

RESUMEN

InP-based quantum dot (QD) light-emitting diodes (QLEDs) provide a heavy-metal-free route to size-tuned LEDs having high efficiency. The stability of QLEDs may be enhanced by replacing organic hole-injection layers (HILs) with inorganic layers. However, inorganic HILs reported to date suffer from inefficient hole injection, the result of their shallow work functions. Here, we investigate the tuning of the work function of nickel oxide (NiOx) HILs using self-assembled molecules (SAMs). Density functional theory simulations and near-edge X-ray absorption fine structure put a particular focus onto the molecular orientation of the SAMs in tuning the work function of the NiOx HIL. We find that orientation plays an even stronger role than does the underlying molecular dipole itself: SAMs having the strongest electron-withdrawing nitro group (NO2), despite having a high intrinsic dipole, show limited work function tuning, something we assign to their orientation parallel to the NiOx surface. We further find that the NO2 group─which delocalizes electrons over the molecule by resonance─induces a deep lowest unoccupied molecular orbital level that accepts electrons from QDs, producing luminescence quenching. In contrast, SAMs containing a trifluoromethyl group exhibit an angled orientation relative to the NiOx surface, better activating hole injection into the active layer without inducing luminescence quenching. We report an external quantum efficiency (EQE) of 18.8%─the highest EQE among inorganic HIL-based QLEDs (including Cd-based QDs)─in InP QLEDs employing inorganic HILs.

8.
Adv Mater ; 34(47): e2206884, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36134538

RESUMEN

Solution-processed photodetectors based on colloidal quantum dots (CQDs) are promising candidates for short-wavelength infrared light sensing applications. Present-day CQD photodetectors employ a CQD active layer sandwiched between carrier-transport layers in which the electron-transport layer (ETL) is composed of metal oxides. Herein, a new class of ETLs is developed using n-type CQDs, finding that these benefit from quantum-size effect tuning of the band energies, as well as from surface ligand engineering. Photodetectors operating at 1450 nm are demonstrated using CQDs with tailored functionalities for each of the transport layers and the active layer. By optimizing the band alignment between the ETL and the active layer, CQD photodetectors that combine a low dark current of ≈1 × 10-3 mA cm-2 with a high external quantum efficiency of ≈66% at 1 V are reported, outperforming prior reports of CQD photodetectors operating at >1400 nm that rely on metal oxides as ETLs. It is shown that stable CQD photodetectors rely on well-passivated CQDs: for ETL CQDs, a strongly bound organic ligand trans-4-(trifluoromethyl)cinnamic acid (TFCA) provides improved passivation compared to the weakly bound inorganic ligand tetrabutylammonium iodide (TBAI). TFCA suppresses bias-induced ion migration inside the ETL and improves the operating stability of photodetectors by 50× compared to TBAI.

9.
Nano Lett ; 22(16): 6802-6807, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35969869

RESUMEN

Infrared photodetection enables depth imaging techniques such as structured light and time-of-flight. Traditional photodetectors rely on silicon (Si); however, the bandgap of Si limits photodetection to wavelengths shorter than 1100 nm. Photodetector operation centered at 1370 nm benefits from lower sunlight interference due to atmospheric absorption. Here, we report 1370 nm-operating colloidal quantum dot (CQD) photodetectors and evaluate their outdoor performance. We develop a surface-ligand engineering strategy to tune the electronic properties of each CQD layer and fabricate photodetectors in an inverted (PIN) architecture. The strategy enables photodetectors with an external quantum efficiency of 75% and a low dark current (1 µA/cm2). Outdoor testing demonstrates that CQD-based photodetectors combined with a 10 nm-line width bandpass filter centered at 1370 nm achieve over 2 orders of magnitude (140× at incident intensity 1 µW/cm2) higher signal-to-background ratio than do Si-based photodetectors that use an analogous bandpass filter centered at 905 nm.

10.
Adv Mater ; 34(21): e2200854, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35297516

RESUMEN

Instability in mixed-halide perovskites (MHPs) is a key issue limiting perovskite solar cells and light-emitting diodes (LEDs). One form of instability arises during the processing of MHP quantum dots using an antisolvent to precipitate and purify the dots forming surface traps that lead to decreased luminescence, compromised colloidal stability, and emission broadening. Here, the introduction of inorganic ligands in the antisolvents used in dot purification is reported in order to overcome this problem. MHPs that are colloidally stable for over 1 year at 25 °C and 40% humidity are demonstrated and films that are stable under 100 W cm-2 photoirradiation, 4× longer than the best previously reported MHPs, are reported. In LEDs, the materials enable an EQE of 24.4% (average 22.5 ± 1.3%) and narrow emission (full-width at half maximum of 30 nm). Sixfold-enhanced operating stability relative to the most stable prior red perovskite LEDs having external quantum efficiency >20% is reported.

11.
Adv Mater ; 33(17): e2008690, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33763933

RESUMEN

Engineering halide perovskites through alloying allows synthesis of materials having tuned electronic and optical properties; however, synthesizing many of these alloys is hindered by the formation of demixed phases arising due to thermodynamically unstable crystal structures. Methods have been developed to make such alloys, such as solid-phase reactions, chemical vapor deposition, and mechanical grinding; but these are incompatible with low-temperature solution-processing and monolithic integration, precluding a number of important applications of these materials. Here, solvent-phase kinetic trapping (SPKT), an approach that enables the synthesis of novel thermodynamically unfavored perovskite alloys, is developed. SPKT is used to synthesize Cs1- x Rbx PbCl3 and report the first instance of ultraviolet emission in polycrystalline perovskite thin films. SPKT leads to materials exhibiting superior thermal and photostability compared to non-kinetically trapped materials of the same precursors. Transient absorption spectroscopy of the kinetically trapped material reveals improved optical properties: greater absorption, and longer ground-state bleach lifetimes. SPKT may be applied to other perovskites to realize improved material properties while benefiting from facile solution-processing.

12.
Adv Mater ; 33(5): e2006697, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33349998

RESUMEN

Metal halide perovskites have emerged as promising candidates for solution-processed laser gain materials, with impressive performance in the green and red spectral regions. Despite exciting progress, deep-blue-an important wavelength for laser applications-remains underexplored; indeed, cavity integration and single-mode lasing from large-bandgap perovskites have yet to be achieved. Here, a vapor-assisted chlorination strategy that enables synthesis of low-dimensional CsPbCl3  thin films exhibiting deep-blue emission is reported. Using this approach,  high-quality perovskite thin films having a low surface roughness (RMS ≈ 1.3 nm) and efficient charge transfer properties are achieved. These enable us to document low-threshold amplified spontaneous emission. Levering the high quality of the gain medium,  vertical-cavity surface-emitting lasers with a low lasing threshold of 6.5 µJ cm-2  are fabricated. This report of deep-blue perovskite single-mode lasing showcases the prospect of increasing the range of deep-blue laser sources.

13.
Nat Commun ; 11(1): 3674, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32699223

RESUMEN

Metal halide perovskites have emerged as promising candidates for solution-processed blue light-emitting diodes (LEDs). However, halide phase segregation - and the resultant spectral shift - at LED operating voltages hinders their application. Here we report true-blue LEDs employing quasi-two-dimensional cesium lead bromide with a narrow size distribution of quantum wells, achieved through the incorporation of a chelating additive. Ultrafast transient absorption spectroscopy measurements reveal that the chelating agent helps to control the quantum well thickness distribution. Density functional theory calculations show that the chelating molecule destabilizes the lead species on the quantum well surface and that this in turn suppresses the growth of thicker quantum wells. Treatment with γ-aminobutyric acid passivates electronic traps and enables films to withstand 100 °C for 24 h without changes to their emission spectrum. LEDs incorporating γ-aminobutyric acid-treated perovskites exhibit blue emission with Commission Internationale de l'Éclairage coordinates of (0.12, 0.14) at an external quantum efficiency of 6.3%.

14.
Nano Lett ; 20(7): 5284-5291, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32543860

RESUMEN

Shortwave infrared colloidal quantum dots (SWIR-CQDs) are semiconductors capable of harvesting across the AM1.5G solar spectrum. Today's SWIR-CQD solar cells rely on spin-coating; however, these films exhibit cracking once thickness exceeds ∼500 nm. We posited that a blade-coating strategy could enable thick QD films. We developed a ligand exchange with an additional resolvation step that enabled the dispersion of SWIR-CQDs. We then engineered a quaternary ink that combined high-viscosity solvents with short QD stabilizing ligands. This ink, blade-coated over a mild heating bed, formed micron-thick SWIR-CQD films. These SWIR-CQD solar cells achieved short-circuit current densities (Jsc) that reach 39 mA cm-2, corresponding to the harvest of 60% of total photons incident under AM1.5G illumination. External quantum efficiency measurements reveal both the first exciton peak and the closest Fabry-Perot resonance peak reaching approximately 80%-this is the highest unbiased EQE reported beyond 1400 nm in a solution-processed semiconductor.

15.
J Phys Chem Lett ; 11(11): 4326-4330, 2020 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-32393037

RESUMEN

Low-dimensional copper halides with high luminance have attracted increasing interest as heavy-metal-free light emitters. However, the optical mechanisms underpinning their excellent luminescence remain underexplored. Here, we report multiple self-trapped emissions in Cs3Cu2I5. Power-dependent photoluminescence spectra reveal the appearance of multiple self-trapped emission peaks with increasing excitation power, and this emission behavior is explored across a temperature range of 80-420 K. The zero-dimensional structure and soft crystal lattice contribute to the multiple self-trapped emissions in Cs3Cu2I5: this explains the origin of the broad emission and the luminescence mechanism in Cs3Cu2I5 and will assist in improving our understanding of the optical properties of other metal halides. We incorporate the Cs3Cu2I5 in light-emitting diodes that achieve a peak luminance of 140 cd/m2 and an external quantum efficiency of 0.27%.

16.
Nat Mater ; 19(4): 412-418, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32042078

RESUMEN

The composition of perovskite has been optimized combinatorially such that it often contains six components (AxByC1-x-yPbXzY3-z) in state-of-art perovskite solar cells. Questions remain regarding the precise role of each component, and the lack of a mechanistic explanation limits the practical exploration of the large and growing chemical space. Here, aided by transient photoluminescence microscopy, we find that, in perovskite single crystals, carrier diffusivity is in fact independent of composition. In polycrystalline thin films, the different compositions play a crucial role in carrier diffusion. We report that methylammonium (MA)-based films show a high carrier diffusivity of 0.047 cm2 s-1, while MA-free mixed caesium-formamidinium (CsFA) films exhibit an order of magnitude lower diffusivity. Elemental composition studies show that CsFA grains display a graded composition. This curtails electron diffusion in these films, as seen in both vertical carrier transport and surface potential studies. Incorporation of MA leads to a uniform grain core-to-edge composition, giving rise to a diffusivity of 0.034 cm2 s-1 in CsMAFA films. A model that invokes competing crystallization processes allows us to account for this finding, and suggests further strategies to achieve homogeneous crystallization for the benefit of perovskite optoelectronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...